Book Image

Game Physics Cookbook

By : Gabor Szauer
Book Image

Game Physics Cookbook

By: Gabor Szauer

Overview of this book

Physics is really important for game programmers who want to add realism and functionality to their games. Collision detection in particular is a problem that affects all game developers, regardless of the platform, engine, or toolkit they use. This book will teach you the concepts and formulas behind collision detection. You will also be taught how to build a simple physics engine, where Rigid Body physics is the main focus, and learn about intersection algorithms for primitive shapes. You’ll begin by building a strong foundation in mathematics that will be used throughout the book. We’ll guide you through implementing 2D and 3D primitives and show you how to perform effective collision tests for them. We then pivot to one of the harder areas of game development—collision detection and resolution. Further on, you will learn what a Physics engine is, how to set up a game window, and how to implement rendering. We’ll explore advanced physics topics such as constraint solving. You’ll also find out how to implement a rudimentary physics engine, which you can use to build an Angry Birds type of game or a more advanced game. By the end of the book, you will have implemented all primitive and some advanced collision tests, and you will be able to read on geometry and linear Algebra formulas to take forward to your own games!
Table of Contents (27 chapters)
Game Physics Cookbook
Credits
About the Author
Acknowledgements
About the Reviewer
Acknowledgements
www.PacktPub.com
Customer Feedback
Preface
Index

Introduction


Throughout this book we are going to explore the mathematical concepts required to detect and react to intersections in a 3D environment. In order to achieve robust collision detection and build realistic reactions, we will need a strong understanding of the math required. The most important mathematical concepts in physics are Vectors and Matrices.

Physics and collisions rely heavily on Linear Algebra. The math involved may sound complicated at first, but it can be broken down into simple steps. The recipes in this chapter will explain the properties of vectors using math formulas. Each recipe will also contain a visual guide. Every formula will also have an accompanying code sample.

Note

This chapter does not assume you have any advanced math knowledge. I try to cover everything needed to understand the formulas presented. If you find yourself falling behind, Khan Academy covers the basic concepts of linear algebra at: www.khanacademy.org/math/linear-algebra.