Book Image

Game Physics Cookbook

By : Gabor Szauer
Book Image

Game Physics Cookbook

By: Gabor Szauer

Overview of this book

Physics is really important for game programmers who want to add realism and functionality to their games. Collision detection in particular is a problem that affects all game developers, regardless of the platform, engine, or toolkit they use. This book will teach you the concepts and formulas behind collision detection. You will also be taught how to build a simple physics engine, where Rigid Body physics is the main focus, and learn about intersection algorithms for primitive shapes. You’ll begin by building a strong foundation in mathematics that will be used throughout the book. We’ll guide you through implementing 2D and 3D primitives and show you how to perform effective collision tests for them. We then pivot to one of the harder areas of game development—collision detection and resolution. Further on, you will learn what a Physics engine is, how to set up a game window, and how to implement rendering. We’ll explore advanced physics topics such as constraint solving. You’ll also find out how to implement a rudimentary physics engine, which you can use to build an Angry Birds type of game or a more advanced game. By the end of the book, you will have implemented all primitive and some advanced collision tests, and you will be able to read on geometry and linear Algebra formulas to take forward to your own games!
Table of Contents (27 chapters)
Game Physics Cookbook
Credits
About the Author
Acknowledgements
About the Reviewer
Acknowledgements
www.PacktPub.com
Customer Feedback
Preface
Index

The Scene object


A 3D scene is a collection of models and primitives. The scene can have some optional acceleration structure, similar to how our mesh implementation contains an optional BVH. This acceleration structure is commonly implemented as an Octree, the same way the BVH we implemented for the mesh is an Octree.

One common misconception is that the same scene graph should be used for rendering as the one used for physics. In practice, the two systems need to track different data for different purposes. It makes sense to have a Render Scene and a Physics Scene, both of which contain the same objects, but track the objects in different ways. In this chapter, we will implement a Scene object that is limited to containing Model objects, and not primitives.

Getting ready

We are about to implement a basic scene with an optional Octree acceleration structure. The acceleration structure will be added to the scene later in this chapter. The scene will need functions to add and remove models....