Book Image

Game Physics Cookbook

By : Gabor Szauer
Book Image

Game Physics Cookbook

By: Gabor Szauer

Overview of this book

Physics is really important for game programmers who want to add realism and functionality to their games. Collision detection in particular is a problem that affects all game developers, regardless of the platform, engine, or toolkit they use. This book will teach you the concepts and formulas behind collision detection. You will also be taught how to build a simple physics engine, where Rigid Body physics is the main focus, and learn about intersection algorithms for primitive shapes. You’ll begin by building a strong foundation in mathematics that will be used throughout the book. We’ll guide you through implementing 2D and 3D primitives and show you how to perform effective collision tests for them. We then pivot to one of the harder areas of game development—collision detection and resolution. Further on, you will learn what a Physics engine is, how to set up a game window, and how to implement rendering. We’ll explore advanced physics topics such as constraint solving. You’ll also find out how to implement a rudimentary physics engine, which you can use to build an Angry Birds type of game or a more advanced game. By the end of the book, you will have implemented all primitive and some advanced collision tests, and you will be able to read on geometry and linear Algebra formulas to take forward to your own games!
Table of Contents (27 chapters)
Game Physics Cookbook
Credits
About the Author
Acknowledgements
About the Reviewer
Acknowledgements
www.PacktPub.com
Customer Feedback
Preface
Index

Springs


Springs are important to build realistic objects. In the real world, we use springs everywhere, from watches to the suspension of cars. In games, we can use springs to model these same interactions, or to simulate more complex systems, such as rigidbodies.

Every spring has a Resting Length, sometimes called the spring's Equilibrium. Equilibrium describes the length of a resting spring, that is, when the spring is not contracted or stretched. When a spring is contracted or stretched away from its equilibrium, the spring will try to pull back to its resting length with a force equivalent to the difference of its current length and resting length. This describes Hooke's Law. Mathematically, Hooke's Law is expressed by the following equation:

In this equation, F is the force exerted by the spring, k is the spring constant, and x is the difference between the current length and resting length of the spring. The spring constant represents the strength of the spring, that is, how stiff or...