Book Image

Learning Java by Building Android Games - Second Edition

By : John Horton
Book Image

Learning Java by Building Android Games - Second Edition

By: John Horton

Overview of this book

Android is one of the most popular mobile operating systems presently. It uses the most popular programming language, Java, as the primary language for building apps of all types. However, this book is unlike other Android books in that it doesn’t assume that you already have Java proficiency. This new and expanded second edition of Learning Java by Building Android Games shows you how to start building Android games from scratch. The difficulty level will grow steadily as you explore key Java topics, such as variables, loops, methods, object oriented programming, and design patterns, including code and examples that are written for Java 9 and Android P. At each stage, you will put what you’ve learned into practice by developing a game. You will build games such as Minesweeper, Retro Pong, Bullet Hell, and Classic Snake and Scrolling Shooter games. In the later chapters, you will create a time-trial, open-world platform game. By the end of the book, you will not only have grasped Java and Android but will also have developed six cool games for the Android platform.
Table of Contents (30 chapters)
Learning Java by Building Android Games Second Edition
Contributors
Preface
Index

More operators


We can already add (+), take away (-), multiply (*), divide (/), assign (=) increment (++) and decrement (--) with operators. Let's introduce some more super-useful operators, and then we will go straight on to understand how to use them in Java.

Note

Don't worry about memorizing every operator below. Take a glance at them and their explanations and then move quickly on to the next section. We will put some operators to use soon and they will become much clearer as we see a few examples of what they allow us to do. They are presented here in a list just to make the variety and scope of operators plain from the start. The list will also be more convenient to refer back to when not intermingled with the discussion about implementation that follows it.

We use operators to create an expression which is either true or false. We wrap that expression in parentheses like this: (expression goes here) .

  • The comparison operator (==). This tests for equality and is either true or false...