Book Image

Mastering Graphics Programming with Vulkan

By : Marco Castorina, Gabriel Sassone
5 (1)
Book Image

Mastering Graphics Programming with Vulkan

5 (1)
By: Marco Castorina, Gabriel Sassone

Overview of this book

Vulkan is now an established and flexible multi-platform graphics API. It has been adopted in many industries, including game development, medical imaging, movie productions, and media playback. Learning Vulkan is a foundational step to understanding how a modern graphics API works, both on desktop and mobile. In Mastering Graphics Programming with Vulkan, you’ll begin by developing the foundations of a rendering framework. You’ll learn how to leverage advanced Vulkan features to write a modern rendering engine. The chapters will cover how to automate resource binding and dependencies. You’ll then take advantage of GPU-driven rendering to scale the size of your scenes and finally, you’ll get familiar with ray tracing techniques that will improve the visual quality of your rendered image. By the end of this book, you’ll have a thorough understanding of the inner workings of a modern rendering engine and the graphics techniques employed to achieve state-of-the-art results. The framework developed in this book will be the starting point for all your future experiments.
Table of Contents (21 chapters)
1
Part 1: Foundations of a Modern Rendering Engine
7
Part 2: GPU-Driven Rendering
13
Part 3: Advanced Rendering Techniques

Summary

In this chapter, we have provided the details on how to use ray tracing in Vulkan. We started by explaining two fundamental concepts:

  • Acceleration Structures: These are needed to speed up scene traversal. This is essential to achieve real-time results.
  • Shader binding tables: Ray tracing pipelines can invoke multiple shaders, and these tables are used to tell the API which shaders to use for which stage.

In the next section, we provided the implementation details to create TLASes and BLASes. We first record the list of geometries that compose our mesh. Next, we use this list to create a BLAS. Each BLAS can then be instanced multiple times within a TLAS, as each BLAS instance defines its own transform. With this data, we can then create our TLAS.

In the third and final section, we explained how to create a ray tracing pipeline. We started with the creation of individual shader types. Next, we demonstrated how to combine these individual shaders into a ray...