Book Image

Mastering Graphics Programming with Vulkan

By : Marco Castorina, Gabriel Sassone
5 (1)
Book Image

Mastering Graphics Programming with Vulkan

5 (1)
By: Marco Castorina, Gabriel Sassone

Overview of this book

Vulkan is now an established and flexible multi-platform graphics API. It has been adopted in many industries, including game development, medical imaging, movie productions, and media playback. Learning Vulkan is a foundational step to understanding how a modern graphics API works, both on desktop and mobile. In Mastering Graphics Programming with Vulkan, you’ll begin by developing the foundations of a rendering framework. You’ll learn how to leverage advanced Vulkan features to write a modern rendering engine. The chapters will cover how to automate resource binding and dependencies. You’ll then take advantage of GPU-driven rendering to scale the size of your scenes and finally, you’ll get familiar with ray tracing techniques that will improve the visual quality of your rendered image. By the end of this book, you’ll have a thorough understanding of the inner workings of a modern rendering engine and the graphics techniques employed to achieve state-of-the-art results. The framework developed in this book will be the starting point for all your future experiments.
Table of Contents (21 chapters)
1
Part 1: Foundations of a Modern Rendering Engine
7
Part 2: GPU-Driven Rendering
13
Part 3: Advanced Rendering Techniques

Summary

In this chapter, we have presented two implementations for ray-traced shadows. In the first section, we provided a simple implementation similar to what you might find in an offline renderer. We simply shoot one ray per fragment to each light to determine whether it’s visible or not from that position.

While this works well for point lights, it would require many rays to support other light types and render soft shadows. For this reason, we also provided an alternative that makes use of spatial and temporal information to determine how many samples to use per light.

We start by computing the visibility variance of the past four frames. We then filter this value to determine how many rays to shoot for each fragment for each light. We use this count to traverse the scene and determine the visibility value for each fragment. Finally, we filter the visibility we obtained to reduce the noise. The filtered visibility is then used in the lighting computation to determine...