Book Image

Mastering Graphics Programming with Vulkan

By : Marco Castorina, Gabriel Sassone
5 (1)
Book Image

Mastering Graphics Programming with Vulkan

5 (1)
By: Marco Castorina, Gabriel Sassone

Overview of this book

Vulkan is now an established and flexible multi-platform graphics API. It has been adopted in many industries, including game development, medical imaging, movie productions, and media playback. Learning Vulkan is a foundational step to understanding how a modern graphics API works, both on desktop and mobile. In Mastering Graphics Programming with Vulkan, you’ll begin by developing the foundations of a rendering framework. You’ll learn how to leverage advanced Vulkan features to write a modern rendering engine. The chapters will cover how to automate resource binding and dependencies. You’ll then take advantage of GPU-driven rendering to scale the size of your scenes and finally, you’ll get familiar with ray tracing techniques that will improve the visual quality of your rendered image. By the end of this book, you’ll have a thorough understanding of the inner workings of a modern rendering engine and the graphics techniques employed to achieve state-of-the-art results. The framework developed in this book will be the starting point for all your future experiments.
Table of Contents (21 chapters)
1
Part 1: Foundations of a Modern Rendering Engine
7
Part 2: GPU-Driven Rendering
13
Part 3: Advanced Rendering Techniques

Introduction to Dynamic Diffuse Global Illumination (DDGI)

In this section, we will explain the algorithm behind DDGI. DDGI is based on two main tools: light probes and irradiance volumes:

  • Light probes are points in space, represented as spheres, that encode light information
  • Irradiance volumes are defined as spaces that contain three-dimensional grids of light probes with fixed spacing between them

Sampling is easier when the layout is regular, even though we will see some improvements to placements later. Probes are encoded using octahedral mapping, a convenient way to map a square to a sphere. Links to the math behind octahedral mapping have been provided in the Further reading section.

The core idea behind DDGI is to dynamically update probes using ray tracing: for each probe, we will cast some rays and calculate the radiance at the triangle intersection. Radiance is calculated with the dynamic lights present in the engine, reacting in real time to any light...