Book Image

Mastering Graphics Programming with Vulkan

By : Marco Castorina, Gabriel Sassone
5 (1)
Book Image

Mastering Graphics Programming with Vulkan

5 (1)
By: Marco Castorina, Gabriel Sassone

Overview of this book

Vulkan is now an established and flexible multi-platform graphics API. It has been adopted in many industries, including game development, medical imaging, movie productions, and media playback. Learning Vulkan is a foundational step to understanding how a modern graphics API works, both on desktop and mobile. In Mastering Graphics Programming with Vulkan, you’ll begin by developing the foundations of a rendering framework. You’ll learn how to leverage advanced Vulkan features to write a modern rendering engine. The chapters will cover how to automate resource binding and dependencies. You’ll then take advantage of GPU-driven rendering to scale the size of your scenes and finally, you’ll get familiar with ray tracing techniques that will improve the visual quality of your rendered image. By the end of this book, you’ll have a thorough understanding of the inner workings of a modern rendering engine and the graphics techniques employed to achieve state-of-the-art results. The framework developed in this book will be the starting point for all your future experiments.
Table of Contents (21 chapters)
1
Part 1: Foundations of a Modern Rendering Engine
7
Part 2: GPU-Driven Rendering
13
Part 3: Advanced Rendering Techniques

Implementing DDGI

The first shaders we will read are the ray tracing shaders. These, as we saw in Chapter 12, Getting Started with Ray Tracing, come as a bundle that includes the ray-generation, ray-hit, and ray-miss shaders.

There are a set of different methods that convert from world space into grid indices and vice versa that will be used here; they are included with the code.

First, we want to define the ray payload – that is, the information that’s cached after the ray tracing query is performed:

struct RayPayload {
    vec3 radiance;
    float distance;
};

Ray-generation shader

The first shader is called ray-generation. It spawns rays from the probe’s position using random directions on a sphere using spherical Fibonacci sequences.

Like dithering for TAA and Volumetric Fog, using random directions and temporal accumulation (which happens in the Probe Update shader) allows us to have more information...