Book Image

Complete Virtual Reality and Augmented Reality Development with Unity

By : Jesse Glover, Jonathan Linowes
Book Image

Complete Virtual Reality and Augmented Reality Development with Unity

By: Jesse Glover, Jonathan Linowes

Overview of this book

Unity is the leading platform to develop mixed reality experiences because it provides a great pipeline for working with 3D assets. Using a practical and project-based approach, this Learning Path educates you about the specifics of AR and VR development using Unity 2018 and Unity 3D. You’ll learn to integrate, animate, and overlay 3D objects on your camera feed, before moving on to implement sensor-based AR applications. You’ll explore various concepts by creating an AR application using Vuforia for both macOS and Windows for Android and iOS devices. Next, you’ll learn how to develop VR applications that can be experienced with devices, such as Oculus and Vive. You’ll also explore various tools for VR development: gaze-based versus hand controller input, world space UI canvases, locomotion and teleportation, timeline animation, and multiplayer networking. You’ll learn the Unity 3D game engine via the interactive Unity Editor and C# programming. By the end of this Learning Path, you’ll be fully equipped to develop rich, interactive mixed reality experiences using Unity. This Learning Path includes content from the following Packt products: • Unity Virtual Reality Projects - Second Edition by Jonathan Linowes • Unity 2018 Augmented Reality Projects by Jesse Glover
Table of Contents (24 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Statistics used with GIS


Statistics is heavily used in GIS, and there is a special branch of statistics that deals with field data specifically. This special branch of statistics uses spatial data with a continuous index. It is able to provide methods to model spatial correlation and predict values at arbitrary locations, which is also known as interpolation.

When geographic phenomena are measured, the observation methods can dictate the accuracy of any analysis. There are limits caused by the nature of some data, where there is a constant or dynamic degree of precision that is always lost in measurement. This loss of precision is determined by the scale and distribution of the data collection.

When determining the statistical relevance of any analysis, the average has to be determined so that the points outside of any measurement can be included to their predicted behavior. Applied statistics and data collection methods have a limitation to predicting the behavior of particles, points, and...