Book Image

Beginning C++ Game Programming - Second Edition

By : John Horton
Book Image

Beginning C++ Game Programming - Second Edition

By: John Horton

Overview of this book

The second edition of Beginning C++ Game Programming is updated and improved to include the latest features of Visual Studio 2019, SFML, and modern C++ programming techniques. With this book, you’ll get a fun introduction to game programming by building five fully playable games of increasing complexity. You’ll learn to build clones of popular games such as Timberman, Pong, a Zombie survival shooter, a coop puzzle platformer and Space Invaders. The book starts by covering the basics of programming. You’ll study key C++ topics, such as object-oriented programming (OOP) and C++ pointers, and get acquainted with the Standard Template Library (STL). The book helps you learn about collision detection techniques and game physics by building a Pong game. As you build games, you’ll also learn exciting game programming concepts such as particle effects, directional sound (spatialization), OpenGL programmable shaders, spawning objects, and much more. Finally, you’ll explore game design patterns to enhance your C++ game programming skills. By the end of the book, you’ll have gained the knowledge you need to build your own games with exciting features from scratch
Table of Contents (25 chapters)
23
Chapter 23: Before You Go...

Casting smart pointers

We will often want to pack the smart pointers of derived classes into data structures or function parameters of the base class such as all the different derived Component classes. This is the essence of polymorphism. Smart pointers can achieve this using casting. But what happens when we later need to access the functionality or data of the derived class?

A good example of where this will regularly be necessary is when we deal with components inside our game objects. There will be an abstract Component class and derived from that there will be GraphicsComponent, UpdateComponent, and more besides.

As an example, we will want to call the update function on all the UpdateComponent instances each frame of the game loop. But if all the components are stored as base class Component instances, then it might seem that we can't do this. Casting from the base class to a derived class solves this problem.

The following code casts myComponent, which is a base...