Book Image

3D Graphics Rendering Cookbook

By : Sergey Kosarevsky, Viktor Latypov
4 (2)
Book Image

3D Graphics Rendering Cookbook

4 (2)
By: Sergey Kosarevsky, Viktor Latypov

Overview of this book

OpenGL is a popular cross-language, cross-platform application programming interface (API) used for rendering 2D and 3D graphics, while Vulkan is a low-overhead, cross-platform 3D graphics API that targets high-performance applications. 3D Graphics Rendering Cookbook helps you learn about modern graphics rendering algorithms and techniques using C++ programming along with OpenGL and Vulkan APIs. The book begins by setting up a development environment and takes you through the steps involved in building a 3D rendering engine with the help of basic, yet self-contained, recipes. Each recipe will enable you to incrementally add features to your codebase and show you how to integrate different 3D rendering techniques and algorithms into one large project. You'll also get to grips with core techniques such as physically based rendering, image-based rendering, and CPU/GPU geometry culling, to name a few. As you advance, you'll explore common techniques and solutions that will help you to work with large datasets for 2D and 3D rendering. Finally, you'll discover how to apply optimization techniques to build performant and feature-rich graphics applications. By the end of this 3D rendering book, you'll have gained an improved understanding of best practices used in modern graphics APIs and be able to create fast and versatile 3D rendering frameworks.
Table of Contents (12 chapters)

Implementing programmable vertex pulling (PVP) in OpenGL

The concept of programmable vertex pulling (PVP) was proposed in 2012 by Daniel Rákos in the amazing book OpenGL Insights. This article goes deep into the architecture of the GPUs of that time and why it was beneficial to use this data storage approach. Initially, the idea of vertex pulling was to store vertex data inside one-dimensional buffer textures and, instead of setting up standard OpenGL vertex attributes, read the data using texelFetch() and a GLSL samplerBuffer in the vertex shader. The built-in GLSL gl_VertexID variable was used as an index to calculate texture coordinates for texel fetching. The reason this trick was implemented was because developers were hitting CPU limits with many draw calls. Due to this, it was beneficial to combine multiple meshes inside a single buffer and render them in a single draw call, without rebinding any vertex arrays or buffer objects to improve draw calls batching.

This technique...