Book Image

3D Graphics Rendering Cookbook

By : Sergey Kosarevsky, Viktor Latypov
4 (2)
Book Image

3D Graphics Rendering Cookbook

4 (2)
By: Sergey Kosarevsky, Viktor Latypov

Overview of this book

OpenGL is a popular cross-language, cross-platform application programming interface (API) used for rendering 2D and 3D graphics, while Vulkan is a low-overhead, cross-platform 3D graphics API that targets high-performance applications. 3D Graphics Rendering Cookbook helps you learn about modern graphics rendering algorithms and techniques using C++ programming along with OpenGL and Vulkan APIs. The book begins by setting up a development environment and takes you through the steps involved in building a 3D rendering engine with the help of basic, yet self-contained, recipes. Each recipe will enable you to incrementally add features to your codebase and show you how to integrate different 3D rendering techniques and algorithms into one large project. You'll also get to grips with core techniques such as physically based rendering, image-based rendering, and CPU/GPU geometry culling, to name a few. As you advance, you'll explore common techniques and solutions that will help you to work with large datasets for 2D and 3D rendering. Finally, you'll discover how to apply optimization techniques to build performant and feature-rich graphics applications. By the end of this 3D rendering book, you'll have gained an improved understanding of best practices used in modern graphics APIs and be able to create fast and versatile 3D rendering frameworks.
Table of Contents (12 chapters)

Working with a 3D camera and basic user interaction

To debug a graphical application, it is very helpful to be able to navigate and move around within a 3D scene using a keyboard or mouse. Graphics APIs by themselves are not familiar with the concepts of camera and user interaction, so we have to implement a camera model that will convert user input into a view matrix usable by OpenGL or Vulkan. In this recipe, we will learn how to create a very simple yet extensible camera implementation and use it to enhance the functionality of examples from the previous chapter.

Getting ready

The source code for this recipe can be found in Chapter4/GL01_Camera.

How to do it...

Our camera implementation will calculate a view matrix and a 3D position point based on the selected dynamic model. Let's look at the steps:

  1. First, let's implement the Camera class, which will represent our main API to work with the 3D camera. The class stores a reference to an instance of the...