Book Image

3D Graphics Rendering Cookbook

By : Sergey Kosarevsky, Viktor Latypov
4 (2)
Book Image

3D Graphics Rendering Cookbook

4 (2)
By: Sergey Kosarevsky, Viktor Latypov

Overview of this book

OpenGL is a popular cross-language, cross-platform application programming interface (API) used for rendering 2D and 3D graphics, while Vulkan is a low-overhead, cross-platform 3D graphics API that targets high-performance applications. 3D Graphics Rendering Cookbook helps you learn about modern graphics rendering algorithms and techniques using C++ programming along with OpenGL and Vulkan APIs. The book begins by setting up a development environment and takes you through the steps involved in building a 3D rendering engine with the help of basic, yet self-contained, recipes. Each recipe will enable you to incrementally add features to your codebase and show you how to integrate different 3D rendering techniques and algorithms into one large project. You'll also get to grips with core techniques such as physically based rendering, image-based rendering, and CPU/GPU geometry culling, to name a few. As you advance, you'll explore common techniques and solutions that will help you to work with large datasets for 2D and 3D rendering. Finally, you'll discover how to apply optimization techniques to build performant and feature-rich graphics applications. By the end of this 3D rendering book, you'll have gained an improved understanding of best practices used in modern graphics APIs and be able to create fast and versatile 3D rendering frameworks.
Table of Contents (12 chapters)

Implementing an infinite grid GLSL shader

In the previous recipes of this chapter, we learned how to organize geometry storage in a more systematic way. To debug our applications, it is useful to have a visible representation of the coordinate system so that a viewer can quickly infer the camera orientation and position just by looking at a rendered image. A natural way to represent a coordinate system in an image is to render an infinite grid where the grid plane is aligned with one of the coordinate planes. Let's learn how to implement a decent-looking grid in GLSL.

Getting ready

The full C++ source code for this recipe can be found in Chapter5/GL01_Grid. The corresponding GLSL shaders are located in the data/shaders/chapter05/GL01_grid.frag and data/shaders/chapter05/GL01_grid.vert files.

How to do it...

To parametrize our grid, we should introduce some parameters. They can be found and tweaked in the data/shaders/chapter05/GridParameters.h GLSL include file:

...