Book Image

3D Graphics Rendering Cookbook

By : Sergey Kosarevsky, Viktor Latypov
4 (2)
Book Image

3D Graphics Rendering Cookbook

4 (2)
By: Sergey Kosarevsky, Viktor Latypov

Overview of this book

OpenGL is a popular cross-language, cross-platform application programming interface (API) used for rendering 2D and 3D graphics, while Vulkan is a low-overhead, cross-platform 3D graphics API that targets high-performance applications. 3D Graphics Rendering Cookbook helps you learn about modern graphics rendering algorithms and techniques using C++ programming along with OpenGL and Vulkan APIs. The book begins by setting up a development environment and takes you through the steps involved in building a 3D rendering engine with the help of basic, yet self-contained, recipes. Each recipe will enable you to incrementally add features to your codebase and show you how to integrate different 3D rendering techniques and algorithms into one large project. You'll also get to grips with core techniques such as physically based rendering, image-based rendering, and CPU/GPU geometry culling, to name a few. As you advance, you'll explore common techniques and solutions that will help you to work with large datasets for 2D and 3D rendering. Finally, you'll discover how to apply optimization techniques to build performant and feature-rich graphics applications. By the end of this 3D rendering book, you'll have gained an improved understanding of best practices used in modern graphics APIs and be able to create fast and versatile 3D rendering frameworks.
Table of Contents (12 chapters)

Implementing the glTF2 shading model

This recipe will cover how to integrate a PBR into your graphics pipeline. Since the topic of PBR rendering is vast, we focus on a minimalistic implementation just to guide you and get you started. In the book text right here, we focus on the GLSL shader code for the PBR shading model and use OpenGL to make things simpler. However, the source code bundle for this book contains a relatively small Vulkan implementation that reuses the same GLSL code. Indeed, rendering a physically based image is nothing more than running a fancy pixel shader with a set of textures.

Getting ready

It is recommended to read about glTF 2.0 before you proceed with this recipe. A lightweight introduction to the glTF 2.0 shading model can be found at https://github.com/KhronosGroup/glTF-Sample-Viewer/tree/glTF-WebGL-PBR.

The C++ source code for this recipe is in the Chapter6/GL01_PBR folder. The GLSL shader code responsible for PBR calculations can be found in data...