Book Image

Hands-On Reinforcement Learning for Games

By : Micheal Lanham
Book Image

Hands-On Reinforcement Learning for Games

By: Micheal Lanham

Overview of this book

With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.
Table of Contents (19 chapters)
1
Section 1: Exploring the Environment
7
Section 2: Exploiting the Knowledge
15
Section 3: Reward Yourself

Summary

For this chapter, we continued exploring TD learning. We looked at an example of an online TD (0) method called SARSA. Then, we looked at how we can discretize an observation space to tackle harder problems but still use the same toolset. From there, we looked at how we could tackle harder continuous space problems such as CartPole. After that, we revisited TDL and then looked to n step forward views, decided that was less than optimal, and then moved to backward views and eligibility traces, which led to us uncovering TD (λ), SARSA(λ), and Q (λ). Using SARSA(λ), we were able to solve the MountainCar environment in far less time. Finally, we wanted to tackle a far more difficult environment, LunarLander using SARSA(λ) without deep learning.

In the next chapter, we look at introducing deep learning and escalate ourselves to deep reinforcement...