Book Image

Panda3D 1.6 Game Engine Beginner's Guide

Book Image

Panda3D 1.6 Game Engine Beginner's Guide

Overview of this book

Panda3D is a game engine, a framework for 3D rendering and game development for Python and C++ programs. It includes graphics, audio, I/O, collision detection, and other abilities relevant to the creation of 3D games. Also, Panda3D is Open Source and free for any purpose, including commercial ventures. This book will enable you to create finished, marketable computer games using Panda3D and other entirely open-source tools and then sell those games without paying a cent for licensing. Panda3D 1.6 Game Engine Beginner's Guide follows a logical progression from a zero start through the game development process all the way to a finished, packaged installer. Packed with examples and detailed tutorials in every section, it teaches the reader through first-hand experience. These tutorials are followed by explanations that describe what happened in the tutorial and why. You will start by setting up a workspace, and then move on to the basics of starting up Panda3D. From there, you will begin adding objects like a level and a character to the world inside Panda3D. Then the book will teach you to put the game's player in control by adding change over time and response to user input. Then you will learn how to make it possible for objects in the world to interact with each other by using collision detection and beautify your game with Panda3D's built-in filters, shaders, and texturing. Finally, you will add an interface, audio, and package it all up for the customer.
Table of Contents (22 chapters)
Panda3D 1.6 Game Engine
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Exposing joints


We can do more with Actors than just play animations on them. We can also attach other NodePaths to specific joints in an Actor so that they will follow that joint wherever it moves. This technique is often used to put objects in a character's hands. For our game, we'll be using it to attach the discs and turret to our cycle.

This technique works well for us because we want to change the rotation of the discs and turret. For that to work correctly, the models need to have the points they will rotate around at (0, 0, 0) in their own coordinate system. That means we can't reposition them in the modeling software, as we did with the static parts of the cycle such as the power plant.

Instead, we'll load an Actor that only contains three joints. The joints are located at the positions where we want to place our discs and turret. If we attach the Actor to the cycle's model, we can use the joints as mounting points for the discs and turret.

Without the exposeJoint() method of Actor...