Book Image

OpenGL 4.0 Shading Language Cookbook

Book Image

OpenGL 4.0 Shading Language Cookbook

Overview of this book

The OpenGL Shading Language (GLSL) is a programming language used for customizing parts of the OpenGL graphics pipeline that were formerly fixed-function, and are executed directly on the GPU. It provides programmers with unprecedented flexibility for implementing effects and optimizations utilizing the power of modern GPUs. With version 4.0, the language has been further refined to provide programmers with greater flexibility, and additional features have been added such as an entirely new stage called the tessellation shader. The OpenGL Shading Language 4.0 Cookbook provides easy-to-follow examples that first walk you through the theory and background behind each technique then go on to provide and explain the GLSL and OpenGL code needed to implement it. Beginning level through to advanced techniques are presented including topics such as texturing, screen-space techniques, lighting, shading, tessellation shaders, geometry shaders, and shadows. The OpenGL Shading Language 4.0 Cookbook is a practical guide that takes you from the basics of programming with GLSL 4.0 and OpenGL 4.0, through basic lighting and shading techniques, to more advanced techniques and effects. It presents techniques for producing basic lighting and shading effects; examples that demonstrate how to make use of textures for a wide variety of effects and as part of other techniques; examples of screen-space techniques, shadowing, tessellation and geometry shaders, noise, and animation. The OpenGL Shading Language 4.0 Cookbook provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer graphics applications.
Table of Contents (16 chapters)
OpenGL 4.0 Shading Language Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Creating a "bloom" effect


The "bloom" effect is a visual effect where the bright parts of an image seem to have fringes that extend beyond the boundaries into the darker parts of the image. This effect has its basis in the way that cameras and the human visual system perceive areas of high contrast. Sources of bright light "bleed" into other areas of the image due to the so-called Airy disc which is a diffraction pattern produced by light that passes through an aperture.

The following image shows a bloom effect in the animated film Elephant's Dream ((c) 2006, Blender Foundation / Netherlands Media Art Institute / www.elephantsdream.org). The bright white color from the light behind the door "bleeds" into the darker parts of the image.

Producing such an effect within an artificial CG rendering requires determining which parts of the image are bright enough, extracting those parts, blurring, and re-combining with the original image. Typically, the bloom effect is associated with HDR (High Dynamic...