Book Image

OpenGL 4.0 Shading Language Cookbook

Book Image

OpenGL 4.0 Shading Language Cookbook

Overview of this book

The OpenGL Shading Language (GLSL) is a programming language used for customizing parts of the OpenGL graphics pipeline that were formerly fixed-function, and are executed directly on the GPU. It provides programmers with unprecedented flexibility for implementing effects and optimizations utilizing the power of modern GPUs. With version 4.0, the language has been further refined to provide programmers with greater flexibility, and additional features have been added such as an entirely new stage called the tessellation shader. The OpenGL Shading Language 4.0 Cookbook provides easy-to-follow examples that first walk you through the theory and background behind each technique then go on to provide and explain the GLSL and OpenGL code needed to implement it. Beginning level through to advanced techniques are presented including topics such as texturing, screen-space techniques, lighting, shading, tessellation shaders, geometry shaders, and shadows. The OpenGL Shading Language 4.0 Cookbook is a practical guide that takes you from the basics of programming with GLSL 4.0 and OpenGL 4.0, through basic lighting and shading techniques, to more advanced techniques and effects. It presents techniques for producing basic lighting and shading effects; examples that demonstrate how to make use of textures for a wide variety of effects and as part of other techniques; examples of screen-space techniques, shadowing, tessellation and geometry shaders, noise, and animation. The OpenGL Shading Language 4.0 Cookbook provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer graphics applications.
Table of Contents (16 chapters)
OpenGL 4.0 Shading Language Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Creating a seamless noise texture


It can be particularly useful to have a noise texture that tiles well. If we simply create a noise texture as a finite slice of 3D noise values, then the values will not wrap smoothly across the boundaries of the texture. This can cause hard edges (seams) to appear in the rendered surface if the texture coordinates extend outside of the range of zero to one.

We can create a noise texture that is seamless by making use of the fact that the noise functions are defined on an infinite domain. Instead of simply storing the noise values directly within the texture, we store a linear interpolation of the noise value with three other noise values located at the corners of a rectangle with the same dimensions as the texture itself.

In the following figure, the solid line represents the boundaries of the texture within the noise function's space. The value that we store in the texture at point A will be the linear interpolation of the raw noise values at A, B, C, and...