Book Image

Unity Multiplayer Games

By : Alan R. Stagner
Book Image

Unity Multiplayer Games

By: Alan R. Stagner

Overview of this book

Unity is a game development engine that is fully integrated with a complete set of intuitive tools and rapid workflows used to create interactive 3D content. Multiplayer games have long been a staple of video games, and online multiplayer games have seen an explosion in popularity in recent years. Unity provides a unique platform for independent developers to create the most in-demand multiplayer experiences, from relaxing social MMOs to adrenaline-pumping competitive shooters. A practical guide to writing a variety of online multiplayer games with the Unity game engine, using a multitude of networking middleware from player-hosted games to standalone dedicated servers to cloud multiplayer technology. You can create a wide variety of online games with the Unity 4 as well as Unity 3 Engine. You will learn all the skills needed to make any multiplayer game you can think of using this practical guide. We break down complex multiplayer games into basic components, for different kinds of games, whether they be large multi-user environments or small 8-player action games. You will get started by learning networking technologies for a variety of situations with a Pong game, and also host a game server and learn to connect to it.Then, we will show you how to structure your game logic to work in a multiplayer environment. We will cover how to implement client-side game logic for player-hosted games and server-side game logic for MMO-style games, as well as how to deal with network latency, unreliability, and security. You will then gain an understanding of the Photon Server while creating a star collector game; and later, the Player.IO by creating a multiplayer RTS prototype game. You will also learn using PubNub with Unity by creating a chatbox application. Unity Multiplayer Games will help you learn how to use the most popular networking middleware available for Unity, from peer-oriented setups to dedicated server technology.
Table of Contents (14 chapters)
Unity Multiplayer Games
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Loading networked levels


There are a few tricks to loading networked levels in the Unity game engine. If you just use Application.LoadLevel, you'll encounter a number of issues; specifically you may find that a client connecting to the game won't see any objects that were instantiated via Network.Instantiate. The reason for this is because the level loading process doesn't happen instantly—it actually takes two frames to complete. This occurs after the list of networked objects was received, so the load process will delete them.

Note that Application.LoadLevel is purely client side. Unity imposes no limitations on which level a client or server loads in a networked game. In fact, it's entirely possible that you might have different levels within a networked session, and this is what Network.SetLevelPrefix is for. Each of these levels is assigned some kind of "ID" that uniquely identifies the level. Before loading the level you would use Network.SetLevelPrefix. This essentially separates players into channels, so all players with level prefix 0 are separate from players with level prefix 1, for example.

Note that if your game needs all clients to load the same level, you'll have to ensure this yourself. If a client has a different level loaded than the host, without setting the level prefix to something different than the host, the client might see some odd situations, such as players floating or sunk into the ground (a player could be standing on a bridge in one level, and a different level at the same position might have a building; so the player would appear to be clipped into the building).

The correct way to load levels in a networked game, is to first disable the network queue, load the level, wait two frames, and then re-enable the network queue. This means any incoming messages will not be processed, and will instead be buffered until the new level has completely finished loading.

Let's write a simple network level loader that will handle all of these for us. It's designed as a singleton so we don't need one present in the scene (one will automatically be created):

using UnityEngine;
using System.Collections;

public class NetworkLevelLoader : MonoBehavior
  {
  // implements singleton-style behavior
  public static NetworkLevelLoader Instance
  {
    get
    {
      // no instance yet? Create a new one
      if( instance == null )
      {
        GameObject go = new GameObject( "_networkLevelLoader" );
        // hide it to avoid cluttering up the hieararchy
        go.hideFlags = HideFlags.HideInHierarchy;
        instance = go.AddComponent<NetworkLevelLoader>();

        // don't destroy it when a new scene loads
        GameObject.DontDestroyOnLoad( go );
      }
      return instance;
    }
  }
  private static NetworkLevelLoader instance;

  public void LoadLevel( string levelName, int prefix = 0 )
  {
    StopAllCoroutines();
    StartCoroutine( doLoadLevel( levelName, prefix ) );
  }

  // do the work of pausing the network queue, loading the level, waiting, and then unpausing
  IEnumerator doLoadLevel( string name, int prefix )
  {
    Network.SetSendingEnabled( 0, false );
    Network.isMessageQueueRunning = false;

    Network.SetLevelPrefix( prefix );
    Application.LoadLevel( name );
    yield return null;
    yield return null;

    Network.isMessageQueueRunning = true;
    Network.SetSendingEnabled( 0, true );
  }
}

You can now replace any calls to Application.LoadLevel with NetworkLevelLoader.Instance.LoadLevel. For example, the server might call an RPC which loads the level via the helper class we just wrote, as a buffered RPC so that all clients connecting will automatically load the level.

Note

If your server needs to change level during the connection, for example, in many FPS games players can vote on a new map at the end of a round, things get a bit more complicated. The server should first delete all networked objects belonging to players, remove RPCs from all players (via Network.RemoveRPCs), and then call the load-level RPC.