Book Image

Mastering ROS for Robotics Programming

By : Lentin Joseph
Book Image

Mastering ROS for Robotics Programming

By: Lentin Joseph

Overview of this book

The area of robotics is gaining huge momentum among corporate people, researchers, hobbyists, and students. The major challenge in robotics is its controlling software. The Robot Operating System (ROS) is a modular software platform to develop generic robotic applications. This book discusses the advanced concepts in robotics and how to program using ROS. It starts with deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. After discussing robot manipulation and navigation in robots, you will get to grips with the interfacing I/O boards, sensors, and actuators of ROS. One of the essential ingredients of robots are vision sensors, and an entire chapter is dedicated to the vision sensor, its interfacing in ROS, and its programming. You will discuss the hardware interfacing and simulation of complex robot to ROS and ROS Industrial (Package used for interfacing industrial robots). Finally, you will get to know the best practices to follow when programming using ROS.
Table of Contents (19 chapters)
Mastering ROS for Robotics Programming
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Chapter 2. Working with 3D Robot Modeling in ROS

The first phase of robot manufacturing is its design and modeling. We can design and model the robot using CAD tools such as AutoCAD, Solid Works, Blender, and so on. One of the main purposes of modeling robot is simulation.

The robotic simulation tool can check the critical flaws in the robot design and can confirm the working of the robot before it goes to the manufacturing phase.

The virtual robot model must have all the characteristics of real hardware, the shape of robot may or may not look like the actual robot but it must be an abstract, which has all the physical characteristics of the actual robot.

In this chapter, we are going to discuss the designing of two robots. One is a seven DOF ( Degrees of Freedom) manipulator and the other is a differential drive robot. In the upcoming chapters, we can see its simulation and how to build the real hardware and finally, it's interfacing to ROS.

If we are planning to create the 3D model of the...