Book Image

Practical Internet of Things Security

By : Drew Van Duren, Brian Russell
Book Image

Practical Internet of Things Security

By: Drew Van Duren, Brian Russell

Overview of this book

With the advent of Internet of Things (IoT), businesses will be faced with defending against new types of threats. The business ecosystem now includes cloud computing infrastructure, mobile and fixed endpoints that open up new attack surfaces, a desire to share information with many stakeholders and a need to take action quickly based on large quantities of collected data. . It therefore becomes critical to ensure that cyber security threats are contained to a minimum when implementing new IoT services and solutions. . The interconnectivity of people, devices, and companies raises stakes to a new level as computing and action become even more mobile, everything becomes connected to the cloud, and infrastructure is strained to securely manage the billions of devices that will connect us all to the IoT. This book shows you how to implement cyber-security solutions, IoT design best practices and risk mitigation methodologies to address device and infrastructure threats to IoT solutions. This book will take readers on a journey that begins with understanding the IoT and how it can be applied in various industries, goes on to describe the security challenges associated with the IoT, and then provides a set of guidelines to architect and deploy a secure IoT in your Enterprise. The book will showcase how the IoT is implemented in early-adopting industries and describe how lessons can be learned and shared across diverse industries to support a secure IoT.
Table of Contents (17 chapters)
Practical Internet of Things Security
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface
Index

IoT uses today


It is a cliché to declare how fast Moore's law is changing our technology-rich world, how connected our devices, social networks, even bodies, cars, and other objects are becoming.

Another useful way to think of the IoT is what happens when the network extends not to the last mile or last inch endpoint, but the last micron where virtual and digital become physical. Whether the network extends to a motor servo controller, temperature sensor, accelerometer, light bulb, stepper motor, washing machine monitor, or pacemaker, the effect is the same; the information sources and sinks allow broad control, monitoring, and useful visibility between our physical and virtual worlds. In the case of the IoT, the physical world is a direct component of the digital information, whether acting as subject or object.

IoT applications are boundless. Volumes could be written today about what is already deployed and what is currently being planned. The following are just a few examples of how we are leveraging the IoT.

Energy industry and smart grid

Fast disappearing are the days of utility companies sending workers out in vans to read the electrical and gas meters mounted to the exterior of your house. Some homes today and all homes tomorrow will be connected homes with connected smart appliances that communicate electrical demand and load information with the utilities. Combined with a utility's ability to reach down into the home's appliance, such demand-response technology aims to make our energy generation and distribution systems much more efficient, resilient, and more supportive of environmentally responsible living. Home appliances represent just one Home Area Network component of the so-called smart grid, however. The distribution, monitoring, and control systems of this energy system involve the IoT in many capacities. Ubiquitous sensing, control, and communications needed in energy production are critical CPS elements of the IoT. The newly installed smart meter now attached to your home is just one example, and allows direct two-way communication between your home's electrical enclave and the utility providing its energy.

Connected vehicles and transportation

Consider a connected automobile that is constantly leveraging an onboard array of sensors that scan the roadway and make real-time calculations to identify potential safety issues that a driver would not be able to see. Now, add additional vehicle-to-vehicle (V2V) communication capabilities that allow other cars to message and signal to your vehicle. Preemptive messages allow decisions to be made based on information that is not yet available to the driver's or vehicle's line-of-sight sensors (for example, reporting of vehicle pile-up in dense fog conditions). With all of these capabilities, we can begin to have confidence in the abilities of cars to eventually drive themselves (autonomous vehicles) safely and not just report hazards to us.

Manufacturing

The manufacturing world has driven a substantial amount of the industrial IoT use cases. Robotic systems, assembly lines, manufacturing plan design and operation; all of these systems are driven by myriad types of connected sensors and actuators. Originally isolated, now they're connected over various data buses, intranets, and the Internet. Distributed automation and control requires diverse and distributed devices communicating with management and monitoring applications. Improving the efficiency of these systems has been the principal driver for such IoT enablement.

Wearables

Wearables in the IoT include anything strapped to or otherwise attached to the human body that collects state, communicates information, or otherwise performs some type of control function on or around the individual. The Apple iWatch, FitBit, and others are well-known examples. Wearable, networked sensors may detect inertial acceleration (for example, to evaluate a runner's stride and tempo), heart rate, temperature, geospatial location (for calculating speed and historic tracks), and many others. The enormous utility of wearables and the data they produce is evident in the variety of wearable applications available on today's iTunes proprietary application stores. The majority of wearables have direct or indirect network connectivity to various cloud service providers typically associated with the wearables manufacturer (for example, Fitbit). Some organizations are now including wearables in corporate fitness programs to track employee health and encourage health-conscious living with the promise of lowering corporate and employee healthcare expenses.

New advancements will transform wearables, however, into far more sophisticated structures and enhancements to common living items. For example, micro devices and sensors are being embedded into clothing; virtual reality goggles are being miniaturized and are transforming how we simultaneously interface with the physical and virtual worlds. In addition, the variety of new consumer-level medical wearables promises to improve health monitoring and reporting. The barriers are fast disappearing between the machine and the human body.

Implantables and medical devices

If wearable IoT devices don't closely enough bridge the physical and cyber domains, implantables make up the distance. Implantables include any sensor, controller, or communication device that is inserted and operated within the human body. While implantable IoT devices are typically associated with the medical field (for example, pacemakers), they may also include non-medical products and use cases such as embedded RFID tags usable in physical and logical access control systems. The implant industry is no different than any other device industry in that it has added new communication interfaces to implanted devices that allow the devices to be accessed, controlled, and monitored over a network. Those devices just happened to be located subcutaneously in human beings or other creatures. Both wearables and implantable IoT devices are being miniaturized in the form of micro-electrical mechanical systems (MEMS), some of which can communicate over radio frequency (RF).