Book Image

Linux Device Driver Development Cookbook

By : Rodolfo Giometti
Book Image

Linux Device Driver Development Cookbook

By: Rodolfo Giometti

Overview of this book

Linux is a unified kernel that is widely used to develop embedded systems. As Linux has turned out to be one of the most popular operating systems worldwide, the interest in developing proprietary device drivers has also increased. Device drivers play a critical role in how the system performs and ensure that the device works in the manner intended. By exploring several examples on the development of character devices, the technique of managing a device tree, and how to use other kernel internals, such as interrupts, kernel timers, and wait queue, you’ll be able to add proper management for custom peripherals to your embedded system. You’ll begin by installing the Linux kernel and then configuring it. Once you have installed the system, you will learn to use different kernel features and character drivers. You will also cover interrupts in-depth and understand how you can manage them. Later, you will explore the kernel internals required for developing applications. As you approach the concluding chapters, you will learn to implement advanced character drivers and also discover how to write important Linux device drivers. By the end of this book, you will be equipped with the skills you need to write a custom character driver and kernel code according to your requirements.
Table of Contents (14 chapters)
10
Additional Information: Managing Interrupts and Concurrency

Managing asynchronous notifications with fasync()

In the previous section, we considered the special case in which we can have a process that must manage more than one peripheral. In this situation, we can ask the kernel, which is the ready file descriptor, where to get data from or where to write data to using the poll() or select() system call. However, this is not the only solution. Another possibility is to use the fasync() method.

By using this method, we can ask the kernel to send a signal (usually SIGIO) whenever a new event has occurred on a file descriptor; the event, of course, is a ready-to-read or read-to-write event and the file descriptor is the one connected with our peripheral.

The fasync() method does not have a userspace counterpart due to the already presented methods in this book; there is no fasync() system call at all. We can use it indirectly by utilizing...