Book Image

Linux Device Driver Development Cookbook

By : Rodolfo Giometti
Book Image

Linux Device Driver Development Cookbook

By: Rodolfo Giometti

Overview of this book

Linux is a unified kernel that is widely used to develop embedded systems. As Linux has turned out to be one of the most popular operating systems worldwide, the interest in developing proprietary device drivers has also increased. Device drivers play a critical role in how the system performs and ensure that the device works in the manner intended. By exploring several examples on the development of character devices, the technique of managing a device tree, and how to use other kernel internals, such as interrupts, kernel timers, and wait queue, you’ll be able to add proper management for custom peripherals to your embedded system. You’ll begin by installing the Linux kernel and then configuring it. Once you have installed the system, you will learn to use different kernel features and character drivers. You will also cover interrupts in-depth and understand how you can manage them. Later, you will explore the kernel internals required for developing applications. As you approach the concluding chapters, you will learn to implement advanced character drivers and also discover how to write important Linux device drivers. By the end of this book, you will be equipped with the skills you need to write a custom character driver and kernel code according to your requirements.
Table of Contents (14 chapters)
10
Additional Information: Managing Interrupts and Concurrency

Performing atomic operations

Atomic operations are a crucial step during device driver development. In fact, a driver is not like a normal program that executes from the beginning till the end, as it provides several methods (for example, read or write data to a peripheral, or set some communication parameters), which can be called asynchronously one to another. All these methods operate concurrently on common data structures that must be modified in a consistent manner. That's why we need to be able to perform atomic operations.

The Linux kernel uses a large variety of atomic operations. Each is used for different operations, depending on whether the CPU is running in an interrupt or process context.

When the CPU is in the process context, we can safely use mutexes, which can put the current running process to sleep if the mutex is locked; however, in an interrupt context...