Book Image

Linux Device Driver Development Cookbook

By : Rodolfo Giometti
Book Image

Linux Device Driver Development Cookbook

By: Rodolfo Giometti

Overview of this book

Linux is a unified kernel that is widely used to develop embedded systems. As Linux has turned out to be one of the most popular operating systems worldwide, the interest in developing proprietary device drivers has also increased. Device drivers play a critical role in how the system performs and ensure that the device works in the manner intended. By exploring several examples on the development of character devices, the technique of managing a device tree, and how to use other kernel internals, such as interrupts, kernel timers, and wait queue, you’ll be able to add proper management for custom peripherals to your embedded system. You’ll begin by installing the Linux kernel and then configuring it. Once you have installed the system, you will learn to use different kernel features and character drivers. You will also cover interrupts in-depth and understand how you can manage them. Later, you will explore the kernel internals required for developing applications. As you approach the concluding chapters, you will learn to implement advanced character drivers and also discover how to write important Linux device drivers. By the end of this book, you will be equipped with the skills you need to write a custom character driver and kernel code according to your requirements.
Table of Contents (14 chapters)
10
Additional Information: Managing Interrupts and Concurrency

Using kernel hash tables

As for kernel lists, Linux offers to kernel developers a common interface to manage hash tables. Their implementation is based on a special version of the kernel lists seen in the preceding section and named hlist (which is still a doubly linked list but with a single pointer list head). This API is defined in the header file, linux/include/linux/hashtable.h.

In this recipe, we will show how we can use hash tables in our kernel code by using the Linux API.

Getting ready

Even in this recipe, we can use a kernel module to see how a test code works.

How to do it...

...