Book Image

C Programming for Arduino

By : Julien Bayle
Book Image

C Programming for Arduino

By: Julien Bayle

Overview of this book

Physical computing allows us to build interactive physical systems by using software & hardware in order to sense and respond to the real world. C Programming for Arduino will show you how to harness powerful capabilities like sensing, feedbacks, programming and even wiring and developing your own autonomous systems. C Programming for Arduino contains everything you need to directly start wiring and coding your own electronic project. You'll learn C and how to code several types of firmware for your Arduino, and then move on to design small typical systems to understand how handling buttons, leds, LCD, network modules and much more. After running through C/C++ for the Arduino, you'll learn how to control your software by using real buttons and distance sensors and even discover how you can use your Arduino with the Processing framework so that they work in unison. Advanced coverage includes using Wi-Fi networks and batteries to make your Arduino-based hardware more mobile and flexible without wires. If you want to learn how to build your own electronic devices with powerful open-source technology, then this book is for you.
Table of Contents (21 chapters)
C Programming for Arduino
Credits
About the Author
Acknowledgement
About the Reviewers
www.PacktPub.com
Preface
Index

Presenting the big Arduino family


Arduino is an open source (http://en.wikipedia.org/wiki/Open_source) singleboard-based microcontroller. It is a very popular platform forked from the Wiring platform (http://www.wiring.org.co/) and firstly designed to popularize the use of electronics in interaction design university students' projects.

My Arduino MEGA in my hand

It is based on the Atmel AVR processor (http://www.atmel.com/products/microcontrollers/avr/default.aspx) and provides many inputs and outputs in only one self-sufficient piece of hardware. The official website for the project is http://www.arduino.cc.

The project was started in Italy in 2005 by founders Massimo Banzi and David Cuartielles. Today it is one of the most beautiful examples of the open source concept, brought to the hardware world and being often used only in the software world.

We talk about Arduino family because today we can count around 15 boards 'Arduino-based', which is a funny meta-term to define different type of board designs all made using an Atmel AVR processor. The main differences between those boards are the:

  • Type of processor

  • Number of inputs and outputs

  • Form factor

Some Arduino boards are a bit more powerful, considering calculation speed, some other have more memory, some have a lot of inputs/outputs (check the huge Arduino Mega), some are intended to be integrated in more complex projects and have a very small form factor with very few inputs and outputs… as I used to tell my students each one can find his friend in the Arduino family. There are also boards that include peripherals like Ethernet Connectors or even Bluetooth modules, including antennas.

The magic behind this family is the fact we can use the same Integrated Development Environment (IDE) on our computers with any of those boards (http://en.wikipedia.org/wiki/Integrated_development_environment). Some bits need to be correctly setup but this is the very same software and language we'll use:

Some notable Arduino family members: Uno R3, LilyPad, Arduino Ethernet, Arduino Mega, Arduino Nano, Arduino Pro, and a prototyping shield

A very nice but non-exhaustive reference page about this can be found at http://arduino.cc/en/Main/Hardware.

I especially want you to check the following models:

  • Arduino Uno is the basic one with a replaceable chipset

  • Arduino Mega, 2560 provides a bunch of inputs and outputs

  • Arduino LilyPad, is wearable as clothes

  • Arduino Nano, is very small

Throughout this book I'll use an Arduino Mega and Arduino Uno too; but don't be afraid, when you've mastered Arduino programming, you'll be able to use any of them!