Book Image

Rapid BeagleBoard Prototyping with MATLAB and Simulink

Book Image

Rapid BeagleBoard Prototyping with MATLAB and Simulink

Overview of this book

As an open source embedded single-board computer with many standard interfaces, Beagleboard is ideal for building embedded audio/video systems to realize your practical ideas. The challenge is how to design and implement a good digital processing algorithm on Beagleboard quickly and easily without intensive low-level coding. Rapid BeagleBoard Prototyping with MATLAB and Simulink is a practical, hands-on guide providing you with a number of clear, step-by-step exercises which will help you take advantage of the power of Beagleboard and give you a good grounding in rapid prototyping techniques for your audio/video applications. Rapid BeagleBoard Prototyping with MATLAB and Simulink looks at rapid prototyping and how to apply these techniques to your audio/video applications with Beagleboard quickly and painlessly without intensive manual low-level coding. It will take you through a number of clear, practical recipes that will help you to take advantage of both the Beagleboard hardware platform and Matlab/Simulink signal processing. We will also take a look at building S-function blocks that work as hardware drivers and interfaces for Matlab/Simulink. This gives you more freedom to explore the full range of advantages provided by Beagleboard. By the end of this book, you will have a clear idea about Beagleboard and Matlab/Simulink rapid prototyping as well as how to develop voice recognition systems, motion detection systems with I/O access, and serial communication for your own applications such as a smart home.
Table of Contents (15 chapters)
Rapid BeagleBoard Prototyping with MATLAB and Simulink
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Handling audio in MATLAB/Simulink


In general, the sampled audio data are saved as a file in computer systems. For example, a *.wav file may save the digital audio data at 16-bit resolution and 44.1 kHz sampling rate.

For processing audio data in MATLAB and Simulink, the sampled audio is usually stored as a vector of samples, with each individual value being a double-precision floating point number. Any operation that MATLAB can perform on a vector, in theory, can be performed on stored audio as well. The audio vector can be loaded and saved in the same way as any other MATLAB variable—processed, added, plotted, and so on.