Book Image

Internet of Things with ESP8266

By : Marco Schwartz
Book Image

Internet of Things with ESP8266

By: Marco Schwartz

Overview of this book

The Internet of Things (IoT) is the network of objects such as physical things embedded with electronics, software, sensors, and connectivity, enabling data exchange. ESP8266 is a low cost WiFi microcontroller chip that has the ability to empower IoT and helps the exchange of information among various connected objects. ESP8266 consists of networkable microcontroller modules, and with this low cost chip, IoT is booming. This book will help deepen your knowledge of the ESP8266 WiFi chip platform and get you building exciting projects. Kick-starting with an introduction to the ESP8266 chip, we will demonstrate how to build a simple LED using the ESP8266. You will then learn how to read, send, and monitor data from the cloud. Next, you’ll see how to control your devices remotely from anywhere in the world. Furthermore, you’ll get to know how to use the ESP8266 to interact with web services such as Twitter and Facebook. In order to make several ESP8266s interact and exchange data without the need for human intervention, you will be introduced to the concept of machine-to-machine communication. The latter part of the book focuses more on projects, including a door lock controlled from the cloud, building a physical Bitcoin ticker, and doing wireless gardening. You’ll learn how to build a cloud-based ESP8266 home automation system and a cloud-controlled ESP8266 robot. Finally, you’ll discover how to build your own cloud platform to control ESP8266 devices. With this book, you will be able to create and program Internet of Things projects using the ESP8266 WiFi chip.
Table of Contents (20 chapters)
Internet of Things with ESP8266
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Configuring the hardware


Let's now configure the hardware for this project. The configuration for this project is quite complex, which was why I included a schematic to help you out:

This schematic represents how you should connect the lock to the ESP8266. First, place the transistor on the breadboard, and connect the base of the transistor to the ESP8266 via the 1K Ohm resistor. Then, connect the emitter of the transistor to the ground of the ESP8266. After that, connect the door lock to the 12V DC power supply and to the remaining pin of the transistor. Finally, connect the diode in parallel to the lock, as indicated on the schematics. Note that on the diode, the cathode is usually marked with a grey stripe, corresponding to the schematics.

This is how it should look at the end: