Book Image

ROS Programming: Building Powerful Robots

By : Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph
Book Image

ROS Programming: Building Powerful Robots

By: Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph

Overview of this book

This learning path is designed to help you program and build your robots using open source ROS libraries and tools. We start with the installation and basic concepts, then continue with the more complex modules available in ROS, such as sensor and actuator integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, computer vision, perception in 3D with PCL, and more. We then discuss advanced concepts in robotics and how to program using ROS. You'll get a deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. We'll go through great projects such as building a self-driving car, an autonomous mobile robot, and image recognition using deep learning and ROS. You can find beginner, intermediate, and expert ROS robotics applications inside! It includes content from the following Packt products: ? Effective Robotics Programming with ROS - Third Edition ? Mastering ROS for Robotics Programming ? ROS Robotics Projects
Table of Contents (37 chapters)
Title page
Copyright and Credits
Packt Upsell
Preface
Bibliography
Index

Teleoperating using hand gestures


The idea of this project is converting IMU orientation into the linear and angular velocity of the robot. Here is the overall structure of this project.

Figure 2: Basic structure of the gesture teleop project

For the IMU device, we are using an IMU called MPU-9250 (https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/). The IMU will interface with an Arduino board using the I2C protocol. The orientation values from the IMU are computed by the Arduino and send to PC through the rosserial protocol. The orientation values are received on the PC side as ROS topics and converted into twist messages using a ROS node.

Here is the project block diagram with the MPU 9250 and Arduino board:

Figure 3: Functional block diagram of the robot teleop project

We are using a hand glove in which an Arduino board is fixed in the palm area and an MPU-9250 is fixed on the finger area, as shown in the following image:

Figure 4: Hand glove with Arduino and MPU-9250

There...