Book Image

ROS Programming: Building Powerful Robots

By : Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph
Book Image

ROS Programming: Building Powerful Robots

By: Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph

Overview of this book

This learning path is designed to help you program and build your robots using open source ROS libraries and tools. We start with the installation and basic concepts, then continue with the more complex modules available in ROS, such as sensor and actuator integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, computer vision, perception in 3D with PCL, and more. We then discuss advanced concepts in robotics and how to program using ROS. You'll get a deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. We'll go through great projects such as building a self-driving car, an autonomous mobile robot, and image recognition using deep learning and ROS. You can find beginner, intermediate, and expert ROS robotics applications inside! It includes content from the following Packt products: ? Effective Robotics Programming with ROS - Third Edition ? Mastering ROS for Robotics Programming ? ROS Robotics Projects
Table of Contents (37 chapters)
Title page
Copyright and Credits
Packt Upsell
Preface
Bibliography
Index

Getting started with 3D object recognition


In the previous section, we dealt with 2D object recognition using a 2D and 3D sensor. In this section, we will discuss 3D recognition. So what is 3D object recognition? In 3D object recognition, we take the 3D data or point cloud data of the surroundings and 3D model of the object. Then, we match the scene object with the trained model, and if there is a match found, the algorithm will mark the area of detection.

In real-world scenarios, 3D object recognition/detection is much better than 2D because in 3D detection, we use the complete information of the object, similar to human perception. But there are many challenges involved in this process too. Some of the main constrains are computational power and expensive sensors. We may need more expensive computers to process 3D information; also, the sensors for this purpose are costlier.

Some of the latest applications using 3D object detection and recognition are autonomous robots, especially self-driving...