Book Image

ROS Programming: Building Powerful Robots

By : Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph
Book Image

ROS Programming: Building Powerful Robots

By: Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph

Overview of this book

This learning path is designed to help you program and build your robots using open source ROS libraries and tools. We start with the installation and basic concepts, then continue with the more complex modules available in ROS, such as sensor and actuator integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, computer vision, perception in 3D with PCL, and more. We then discuss advanced concepts in robotics and how to program using ROS. You'll get a deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. We'll go through great projects such as building a self-driving car, an autonomous mobile robot, and image recognition using deep learning and ROS. You can find beginner, intermediate, and expert ROS robotics applications inside! It includes content from the following Packt products: ? Effective Robotics Programming with ROS - Third Edition ? Mastering ROS for Robotics Programming ? ROS Robotics Projects
Table of Contents (37 chapters)
Title page
Copyright and Credits
Packt Upsell
Preface
Bibliography
Index

Mathematical model of a differential drive robot


As you may know, robot kinematics is the study of motion without considering the forces that affect the motion, and robot dynamics is the study of the forces acting on a robot. In this section, we will discuss the kinematics of a differential robot.

Typically, a mobile robot or vehicle can have six degrees of freedom (DOF), which are represented as x, y, z, roll, pitch, and yaw. The x, y, and z degrees are translation, and roll, pitch, and yaw are rotation values. The roll movement of robot is sideways rotation, pitch is forward and backward rotation, and yaw is the heading and orientation of the robot. A differential robot moves along a 2D plane, so we can say it will have only three DOF, such as x, y, and theta, where theta is the heading of the robot and points along the forward direction of the robot.

The following figure shows the coordinate system of a differential-drive robot:

Figure 8: The coordinate system representation of a differential...