Book Image

ROS Programming: Building Powerful Robots

By : Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph
Book Image

ROS Programming: Building Powerful Robots

By: Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph

Overview of this book

This learning path is designed to help you program and build your robots using open source ROS libraries and tools. We start with the installation and basic concepts, then continue with the more complex modules available in ROS, such as sensor and actuator integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, computer vision, perception in 3D with PCL, and more. We then discuss advanced concepts in robotics and how to program using ROS. You'll get a deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. We'll go through great projects such as building a self-driving car, an autonomous mobile robot, and image recognition using deep learning and ROS. You can find beginner, intermediate, and expert ROS robotics applications inside! It includes content from the following Packt products: ? Effective Robotics Programming with ROS - Third Edition ? Mastering ROS for Robotics Programming ? ROS Robotics Projects
Table of Contents (37 chapters)
Title page
Copyright and Credits
Packt Upsell
Preface
Bibliography
Index

The navigation stack in ROS


In order to understand the navigation stack, you should think of it as a set of algorithms that use the sensors of the robot and the odometry so that you can control the robot using a standard message. It can move your robot without any problems, such as crashing, getting stuck in a location, or getting lost to another position.

You would assume that this stack can be easily used with any robot. This is almost true, but it is necessary to tune some configuration files and write some nodes to use the stack.

The robot must satisfy some requirements before it uses the navigation stack:

  • The navigation stack can only handle a differential drive and holonomic-wheeled robots. The shape requisites of the robot must either be a square or a rectangle. However, it can also do certain things with biped robots, such as robot localization, as long as the robot does not move sideways.
  • It requires that the robot publishes information about the relationships between the positions...