Book Image

ROS Programming: Building Powerful Robots

By : Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph
Book Image

ROS Programming: Building Powerful Robots

By: Anil Mahtani, Aaron Martinez, Enrique Fernandez Perdomo, Luis Sánchez, Lentin Joseph

Overview of this book

This learning path is designed to help you program and build your robots using open source ROS libraries and tools. We start with the installation and basic concepts, then continue with the more complex modules available in ROS, such as sensor and actuator integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, computer vision, perception in 3D with PCL, and more. We then discuss advanced concepts in robotics and how to program using ROS. You'll get a deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. We'll go through great projects such as building a self-driving car, an autonomous mobile robot, and image recognition using deep learning and ROS. You can find beginner, intermediate, and expert ROS robotics applications inside! It includes content from the following Packt products: ? Effective Robotics Programming with ROS - Third Edition ? Mastering ROS for Robotics Programming ? ROS Robotics Projects
Table of Contents (37 chapters)
Title page
Copyright and Credits
Packt Upsell
Preface
Bibliography
Index

Computing the homography of two images


The homography matrix is a 3 x 3 matrix that provides transformation up to scale from a given image and a new one, which must be coplanar. In src/homography.cpp, there is an extensive example that takes the first image acquired by the camera and then computes the homography for every new frame in respect to the first image. In order to run the example, take something planar, such as a book cover, and run the following command:

$ roslaunch chapter5_tutorials homography.launch

This runs the camera driver that should grab frames from your camera (webcam), detect features (SURF by default), extract descriptors for each of them, and match them with the ones extracted from the first image using Flann-based matching with a cross-check filter. Once the program has the matches, the homography matrix H is computed.

With H, we can warp the new frame to obtain the original one, as shown in the following screenshot (matches on the top, warped image using H, which is...