Book Image

Raspberry Pi 3 Cookbook for Python Programmers - Third Edition

By : Steven Lawrence Fernandes, Tim Cox
Book Image

Raspberry Pi 3 Cookbook for Python Programmers - Third Edition

By: Steven Lawrence Fernandes, Tim Cox

Overview of this book

Raspberry Pi 3 Cookbook for Python Programmers – Third Edition begins by guiding you through setting up Raspberry Pi 3, performing tasks using Python 3.6, and introducing the first steps to interface with electronics. As you work through each chapter, you will build your skills and apply them as you progress. You will learn how to build text classifiers, predict sentiments in words, develop applications using the popular Tkinter library, and create games by controlling graphics on your screen. You will harness the power of a built in graphics processor using Pi3D to generate your own high-quality 3D graphics and environments. You will understand how to connect Raspberry Pi’s hardware pins directly to control electronics, from switching on LEDs and responding to push buttons to driving motors and servos. Get to grips with monitoring sensors to gather real-life data, using it to control other devices, and viewing the results over the internet. You will apply what you have learned by creating your own Pi-Rover or Pi-Hexipod robots. You will also learn about sentiment analysis, face recognition techniques, and building neural network modules for optical character recognition. Finally, you will learn to build movie recommendations system on Raspberry Pi 3.
Table of Contents (23 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
Index

Using SPI to control an LED matrix


In Chapter 10, Sensing and Displaying Real-World Data, we connected to devices using a bus protocol called I2C. Raspberry Pi also supports another chip-to-chip protocol called Serial Peripheral Interface (SPI). The SPI bus differs from I2C because it uses two single direction data lines (where I2C uses one bidirectional data line).

Although SPI requires more wires (I2C uses two bus signals, SDA and SCL), it supports the simultaneous sending and receiving of data and much higher clock speeds than I2C:

General connections of SPI devices with Raspberry Pi

The SPI bus consists of the following four signals:

  • SCLK: This allows the clock edges to read/write data on the input/output lines; it is driven by the master device. As the clock signal changes from one state to another, the SPI device will check the state of the MOSI signal to read a single bit. Similarly, if the SPI device is sending data, it will use the clock signal edges to synchronize when it sets the...