Book Image

ROS Robotics By Example

Book Image

ROS Robotics By Example

Overview of this book

The visionaries who created ROS developed a framework for robotics centered on the commonality of robotic systems and exploited this commonality in ROS to expedite the development of future robotic systems. From the fundamental concepts to advanced practical experience, this book will provide you with an incremental knowledge of the ROS framework, the backbone of the robotics evolution. ROS standardizes many layers of robotics functionality from low-level device drivers to process control to message passing to software package management. This book provides step-by-step examples of mobile, armed, and flying robots, describing the ROS implementation as the basic model for other robots of these types. By controlling these robots, whether in simulation or in reality, you will use ROS to drive, move, and fly robots using ROS control.
Table of Contents (17 chapters)
ROS Robotics By Example
About the Authors
About the Reviewer

Setting up the mission

For the Kinect, our workstation computer requires us to run Protonect prior to using the kinect2_bridge software. If you have trouble launching the kinect2_bridge software, use the following command before you begin:

$ ./libfreenect2/build/bin/Protonect

Verify that Protonect shows color, depth, and IR images and that none of the screens are black. Be aware that Protonect has three optional parameters: cl (for OpenCL), gl (for OpenGL) or cpu (for CPU support). These options can be useful for testing the Kinect v2 operation.

If Protonect has successfully brought up the Kinect image, then press Ctrl + C to close this window. The kinect2_bridge and kinect2_viewer should then work properly until the system is restarted.

Next, we must determine how to identify our robots within the frame of the Kinect image.

Detecting Crazyflie and a target

For our Crazyflie and target location, we have prepared markers to uniquely identify them in our lab environment. For the Crazyflie, we...