Book Image

Embedded Systems Architecture

By : Daniele Lacamera
Book Image

Embedded Systems Architecture

By: Daniele Lacamera

Overview of this book

Embedded systems are self-contained devices with a dedicated purpose. We come across a variety of fields of applications for embedded systems in industries such as automotive, telecommunications, healthcare and consumer electronics, just to name a few. Embedded Systems Architecture begins with a bird's eye view of embedded development and how it differs from the other systems that you may be familiar with. You will first be guided to set up an optimal development environment, then move on to software tools and methodologies to improve the work flow. You will explore the boot-up mechanisms and the memory management strategies typical of a real-time embedded system. Through the analysis of the programming interface of the reference microcontroller, you'll look at the implementation of the features and the device drivers. Next, you'll learn about the techniques used to reduce power consumption. Then you will be introduced to the technologies, protocols and security aspects related to integrating the system into IoT solutions. By the end of the book, you will have explored various aspects of embedded architecture, including task synchronization in a multi-threading environment, and the safety models adopted by modern real-time operating systems.
Table of Contents (18 chapters)
Title Page
Copyright and Credits
Packt Upsell

The execution stack

As seen in the previous chapter, a bare-metal application starts executing with an empty stack area. The execution stack grows backwards, from the high address provided at boot towards lower addresses every time a new item is stored. The stack keeps track of the chain of function calls at all times by storing the branching point at each function call, but also serves as temporary storage during function executions. Variables within the local scope of each function are stored inside the stack while the function is executing. For this reason, keeping stack usage under control is one of the most critical tasks while developing an embedded system.

Embedded programming requires us to be aware at all times about stack usage while coding. Placing big objects in the stack, such as communication buffers or long strings, is in general not a good idea, considering that the space for the stack is always very limited. The compiler can be instructed to produce a warning every time the...