Book Image

Embedded Systems Architecture

By : Daniele Lacamera
Book Image

Embedded Systems Architecture

By: Daniele Lacamera

Overview of this book

Embedded systems are self-contained devices with a dedicated purpose. We come across a variety of fields of applications for embedded systems in industries such as automotive, telecommunications, healthcare and consumer electronics, just to name a few. Embedded Systems Architecture begins with a bird's eye view of embedded development and how it differs from the other systems that you may be familiar with. You will first be guided to set up an optimal development environment, then move on to software tools and methodologies to improve the work flow. You will explore the boot-up mechanisms and the memory management strategies typical of a real-time embedded system. Through the analysis of the programming interface of the reference microcontroller, you'll look at the implementation of the features and the device drivers. Next, you'll learn about the techniques used to reduce power consumption. Then you will be introduced to the technologies, protocols and security aspects related to integrating the system into IoT solutions. By the end of the book, you will have explored various aspects of embedded architecture, including task synchronization in a multi-threading environment, and the safety models adopted by modern real-time operating systems.
Table of Contents (18 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

The interrupt controller


Real-time systems have improved their accuracy thanks to the rapid evolution of modern embedded systems, and in particular from the research on interrupt controllers. Assigning different priorities to interrupt lines guarantees a lower interrupt latency for higher-priority interrupt sources, and makes the system react faster to prioritized events. Interrupts may, however, occur at any time while the system is running, including during the execution of another interrupt service routine. In this case, the interrupt controller provides a way to chain the interrupt handlers, and the order of execution depends on the priority levels assigned to the interrupt source.

One of the reasons for the popularity of the Cortex-M family of microprocessors among real-time and low-power embedded applications is perhaps the design of its programmable real-time controller, namely the Nested Vector Interrupt Controller, or NVIC for short. The NVIC supports up to 240 interrupt sources...