Book Image

Embedded Systems Architecture

By : Daniele Lacamera
Book Image

Embedded Systems Architecture

By: Daniele Lacamera

Overview of this book

Embedded systems are self-contained devices with a dedicated purpose. We come across a variety of fields of applications for embedded systems in industries such as automotive, telecommunications, healthcare and consumer electronics, just to name a few. Embedded Systems Architecture begins with a bird's eye view of embedded development and how it differs from the other systems that you may be familiar with. You will first be guided to set up an optimal development environment, then move on to software tools and methodologies to improve the work flow. You will explore the boot-up mechanisms and the memory management strategies typical of a real-time embedded system. Through the analysis of the programming interface of the reference microcontroller, you'll look at the implementation of the features and the device drivers. Next, you'll learn about the techniques used to reduce power consumption. Then you will be introduced to the technologies, protocols and security aspects related to integrating the system into IoT solutions. By the end of the book, you will have explored various aspects of embedded architecture, including task synchronization in a multi-threading environment, and the safety models adopted by modern real-time operating systems.
Table of Contents (18 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Generic timers


Providing a SysTick timer is not mandatory for low-end microcontrollers. Some targets may not have a system timer, but all of them expose some kind of interface to program a number of general-purpose timers for the program to be able to implement time-driven operations. Timers in general are very flexible and easy to configure, and are generally capable of triggering interrupts at regular intervals. The STM32F4 provides up to 17 timers, each with different characteristics. Timers are in general independent from each other, as each of them has its own interrupt line and a separate peripheral clock gate. On the STM32F4, for example, these are the steps needed to enable the clock source and the interrupt line for timer 2. The timer interface is based on a counter that is incremented at every tick. The interface exposed on this platform is very flexible and supports a number of features, including the selection of a different clock source for input, the possibility to concatenate...