Book Image

Embedded Systems Architecture - Second Edition

By : Daniele Lacamera
5 (1)
Book Image

Embedded Systems Architecture - Second Edition

5 (1)
By: Daniele Lacamera

Overview of this book

Embedded Systems Architecture begins with a bird’s-eye view of embedded development and how it differs from the other systems that you may be familiar with. This book will help you get the hang of the internal working of various components in real-world systems. You’ll start by setting up a development environment and then move on to the core system architectural concepts, exploring system designs, boot-up mechanisms, and memory management. As you progress through the topics, you’ll explore the programming interface and device drivers to establish communication via TCP/IP and take measures to increase the security of IoT solutions. Finally, you’ll be introduced to multithreaded operating systems through the development of a scheduler and the use of hardware-assisted trusted execution mechanisms. With the help of this book, you will gain the confidence to work with embedded systems at an architectural level and become familiar with various aspects of embedded software development on microcontrollers—such as memory management, multithreading, and RTOS—an approach oriented to memory isolation.
Table of Contents (18 chapters)
1
Part 1 – Introduction to Embedded Systems Development
4
Part 2 – Core System Architecture
8
Part 3 – Device Drivers and Communication Interfaces
13
Part 4 – Multithreading

Introducing serial communication

All the protocols that we will analyze in this chapter manage the access to a serial bus, which may consist of one or more wires, transporting the information in the form of electrical signals corresponding to logic levels zeros and ones, when associated with specific time intervals. The protocols are different in the way they transmit and receive information on the data bus lines. To transmit a byte, the transceiver encodes it as a bit sequence, which is synchronized with a clock. The logic values of the bit are interpreted by the receiver reading its value on a specific front of the clock, depending on the clock’s polarity.

Each protocol specifies the polarity of the clock and the bit order required to transmit the data, which can start with either the most significant or the least significant bit. For example, a system transmitting the ASCII character D over a serial line regulated by raising clock fronts, with the most significant bit...