Book Image

Embedded Systems Architecture - Second Edition

By : Daniele Lacamera
5 (1)
Book Image

Embedded Systems Architecture - Second Edition

5 (1)
By: Daniele Lacamera

Overview of this book

Embedded Systems Architecture begins with a bird’s-eye view of embedded development and how it differs from the other systems that you may be familiar with. This book will help you get the hang of the internal working of various components in real-world systems. You’ll start by setting up a development environment and then move on to the core system architectural concepts, exploring system designs, boot-up mechanisms, and memory management. As you progress through the topics, you’ll explore the programming interface and device drivers to establish communication via TCP/IP and take measures to increase the security of IoT solutions. Finally, you’ll be introduced to multithreaded operating systems through the development of a scheduler and the use of hardware-assisted trusted execution mechanisms. With the help of this book, you will gain the confidence to work with embedded systems at an architectural level and become familiar with various aspects of embedded software development on microcontrollers—such as memory management, multithreading, and RTOS—an approach oriented to memory isolation.
Table of Contents (18 chapters)
1
Part 1 – Introduction to Embedded Systems Development
4
Part 2 – Core System Architecture
8
Part 3 – Device Drivers and Communication Interfaces
13
Part 4 – Multithreading

SPI bus

The SPI bus provides a different approach, based on master-slave communication. As the name suggests, the interface was initially designed to control peripherals. This is reflected in the design, as all the communication is always initiated by the master on the bus. Thanks to the full-duplex pin configuration and the synchronized clock, it may be much faster than asynchronous communication, due to the better robustness to clock skews between the systems sharing the bus. An SPI is widely used as a communication protocol for several different devices, due to its simple logic and the flexibility given by the fact that the slave does not have to be preconfigured to communicate at a predefined speed that matches the one on the master. Multiple peripherals can share the same bus, as long as media access strategies are defined. A common way for a master to control one peripheral at a time is by using separate GPIO lines to control the slave selection, although this does require an...