Book Image

Embedded Systems Architecture - Second Edition

By : Daniele Lacamera
5 (1)
Book Image

Embedded Systems Architecture - Second Edition

5 (1)
By: Daniele Lacamera

Overview of this book

Embedded Systems Architecture begins with a bird’s-eye view of embedded development and how it differs from the other systems that you may be familiar with. This book will help you get the hang of the internal working of various components in real-world systems. You’ll start by setting up a development environment and then move on to the core system architectural concepts, exploring system designs, boot-up mechanisms, and memory management. As you progress through the topics, you’ll explore the programming interface and device drivers to establish communication via TCP/IP and take measures to increase the security of IoT solutions. Finally, you’ll be introduced to multithreaded operating systems through the development of a scheduler and the use of hardware-assisted trusted execution mechanisms. With the help of this book, you will gain the confidence to work with embedded systems at an architectural level and become familiar with various aspects of embedded software development on microcontrollers—such as memory management, multithreading, and RTOS—an approach oriented to memory isolation.
Table of Contents (18 chapters)
Part 1 – Introduction to Embedded Systems Development
Part 2 – Core System Architecture
Part 3 – Device Drivers and Communication Interfaces
Part 4 – Multithreading


In a multithreaded environment where memory, peripherals, and system accesses are shared, a system should provide synchronization mechanisms to allow the tasks to cooperate on the arbitration of the access to system-wide available resources.

Mutexes and semaphores are two of the most commonly used mechanisms of synchronization between parallel threads as they provide the minimal set to solve most concurrency problems. Functions that could block the calling tasks must be able to interact with the scheduler, to move the task to the waiting state whenever the resource is not available and until the lock is released or the semaphore is incremented.


A semaphore is the most common synchronization primitive, which provides a counter with exclusive access, and it is used by two or more threads to cooperate on the arbitration of the usage of a specific shared resource. The API provided to the tasks must guarantee that the object can be used to implement a...