Book Image

Embedded Systems Architecture - Second Edition

By : Daniele Lacamera
5 (1)
Book Image

Embedded Systems Architecture - Second Edition

5 (1)
By: Daniele Lacamera

Overview of this book

Embedded Systems Architecture begins with a bird’s-eye view of embedded development and how it differs from the other systems that you may be familiar with. This book will help you get the hang of the internal working of various components in real-world systems. You’ll start by setting up a development environment and then move on to the core system architectural concepts, exploring system designs, boot-up mechanisms, and memory management. As you progress through the topics, you’ll explore the programming interface and device drivers to establish communication via TCP/IP and take measures to increase the security of IoT solutions. Finally, you’ll be introduced to multithreaded operating systems through the development of a scheduler and the use of hardware-assisted trusted execution mechanisms. With the help of this book, you will gain the confidence to work with embedded systems at an architectural level and become familiar with various aspects of embedded software development on microcontrollers—such as memory management, multithreading, and RTOS—an approach oriented to memory isolation.
Table of Contents (18 chapters)
1
Part 1 – Introduction to Embedded Systems Development
4
Part 2 – Core System Architecture
8
Part 3 – Device Drivers and Communication Interfaces
13
Part 4 – Multithreading

Introduction to isolation mechanisms

Some newer microcontrollers include support for isolation between trusted and non-trusted software running onboard. This mechanism is based on a CPU extension, available only on some specific architectures, which usually relies on a sort of physical separation inside the CPU itself between the two modes of execution. All the code running from a non-trusted zone in the system will have a restricted view of the RAM, devices, and peripherals, which must be dynamically configured by the trusted counterpart in advance.

Software running from the trusted area can also provide features that are not directly accessible from the non-trusted world, through special function calls that cross the secure/non-secure boundary.

Chapter 11, Trusted Execution Environment, explores the technology behind Trust Execution Environments (TEEs), as well as the software components involved in real embedded systems to provide a safe environment to run non-trusted modules and components.