Book Image

Embedded Systems Architecture - Second Edition

By : Daniele Lacamera
5 (1)
Book Image

Embedded Systems Architecture - Second Edition

5 (1)
By: Daniele Lacamera

Overview of this book

Embedded Systems Architecture begins with a bird’s-eye view of embedded development and how it differs from the other systems that you may be familiar with. This book will help you get the hang of the internal working of various components in real-world systems. You’ll start by setting up a development environment and then move on to the core system architectural concepts, exploring system designs, boot-up mechanisms, and memory management. As you progress through the topics, you’ll explore the programming interface and device drivers to establish communication via TCP/IP and take measures to increase the security of IoT solutions. Finally, you’ll be introduced to multithreaded operating systems through the development of a scheduler and the use of hardware-assisted trusted execution mechanisms. With the help of this book, you will gain the confidence to work with embedded systems at an architectural level and become familiar with various aspects of embedded software development on microcontrollers—such as memory management, multithreading, and RTOS—an approach oriented to memory isolation.
Table of Contents (18 chapters)
1
Part 1 – Introduction to Embedded Systems Development
4
Part 2 – Core System Architecture
8
Part 3 – Device Drivers and Communication Interfaces
13
Part 4 – Multithreading

The life cycle of an embedded project

Modern development frameworks suggest splitting the work into smaller action points and marking milestones through the project development while producing intermediate working deliverables. Each deliverable focuses on giving a prototype of the entire system, with the missing features temporarily replaced using dummy code.

These recommendations seem particularly effective for embedded projects. In an environment where every error could be fatal to the entire system, working on small action points, one at a time, is an efficient way to promptly identify defects and regressions while working on the code base, provided that a Continuous Integration (CI) mechanism is in place from the early stages of the development. Intermediate milestones should be as frequent as possible, and for this reason, it is advisable to create a prototype of the final system as soon as possible in the development phase. This has to be taken into account when actions are...