Book Image

Embedded Systems Architecture - Second Edition

By : Daniele Lacamera
5 (1)
Book Image

Embedded Systems Architecture - Second Edition

5 (1)
By: Daniele Lacamera

Overview of this book

Embedded Systems Architecture begins with a bird’s-eye view of embedded development and how it differs from the other systems that you may be familiar with. This book will help you get the hang of the internal working of various components in real-world systems. You’ll start by setting up a development environment and then move on to the core system architectural concepts, exploring system designs, boot-up mechanisms, and memory management. As you progress through the topics, you’ll explore the programming interface and device drivers to establish communication via TCP/IP and take measures to increase the security of IoT solutions. Finally, you’ll be introduced to multithreaded operating systems through the development of a scheduler and the use of hardware-assisted trusted execution mechanisms. With the help of this book, you will gain the confidence to work with embedded systems at an architectural level and become familiar with various aspects of embedded software development on microcontrollers—such as memory management, multithreading, and RTOS—an approach oriented to memory isolation.
Table of Contents (18 chapters)
1
Part 1 – Introduction to Embedded Systems Development
4
Part 2 – Core System Architecture
8
Part 3 – Device Drivers and Communication Interfaces
13
Part 4 – Multithreading

System time

Timekeeping is a basic requirement for almost any embedded system. A microcontroller can be programmed to trigger an interrupt at regular intervals, which is commonly used to increment the monotonic system clock. To do so, a few configuration steps must be performed at startup in order to have a stable tick interrupt. Many processors can run at custom frequencies while using the same oscillator as the source. The input frequency of the oscillator, which can be internal or external to the CPU, is used to derive the processor’s main clock. The configurable logic integrated into the CPU is implemented by a phase-locked loop (PLL) that multiplies the input clock from an external stable source and produces the desired frequencies used by the CPU and integrated peripherals.

Adjusting the flash wait states

If the initialization code is running from flash, it might be necessary to set the wait state for the flash memory before altering the system clocks. If the microprocessor...