Book Image

Arduino Data Communications

By : Robert Thas John
5 (1)
Book Image

Arduino Data Communications

5 (1)
By: Robert Thas John

Overview of this book

In our modern, internet-connected world, where billions of devices constantly collect and send data to systems to be stored and processed, it’s surprising how the intricacies of data transmission and storage are often overlooked in the IoT domain. With Arduino Data Communications, you'll bridge the knowledge gap and become an expert in collecting data from IoT sensors, transmitting data, and configuring your own databases. This book is an exploration of IoT’s inner workings, guiding you through the process of setting up an end-to-end system that you can employ to prototype your own IoT solutions, using easy-to-follow examples. It begins with a general overview of the Arduino ecosystem, acquainting you with various sensors and shields and unveiling the art of data collection. You’ll then explore data formats and methods to store data, both locally and on database servers. As you progress through the chapters, you’ll learn how to set up REST and MQTT infrastructure to communicate with databases and get hands-on with LoRaWAN, Ethernet, cellular, HC-12, and RS-485. The final chapters are your training ground for real-world projects, imparting the essential knowledge you need to tackle complex challenges with confidence. By the end of this Arduino book, you'll have seamlessly configured an end-to-end system, all while immersing yourself in practical scenarios that bring the world of IoT to life.
Table of Contents (20 chapters)
Part 1:Introduction to Arduino and Sensor Data
Part 2:Sending Data
Part 3: Miscellaneous Topics

Learning about Arduino – The company

Arduino is an open source hardware and software company that was set up to simplify how embedded systems engineering is taught to students at a tertiary level. It began as a project in 2005, designed and soldered on a printed circuit board (PCB) using an ATmega8 chip from Atmel. This was an 8-bit chip. While the particular chip on an Arduino board isn’t frequently brought up, the significance cannot be overstated.

The company provided both a board and a way to flash firmware onto the board. This simplified the process of getting machine code onto the chip that was put onto the board.

Over the years, Arduino has released additional boards with different chips and other peripherals on them, aimed at different users. It has made enhancements to the IDE, making it possible to support boards from other manufacturers. The Arduino programming language makes it possible to use one language to program different boards without dealing with the underlying differences. Finally, the Arduino Cloud provides an IoT interface for compatible boards.