Book Image

Developing IoT Projects with ESP32

By : Vedat Ozan Oner
Book Image

Developing IoT Projects with ESP32

By: Vedat Ozan Oner

Overview of this book

Developing IoT Projects with ESP32 provides end-to-end coverage of secure data communication techniques from sensors to cloud platforms that will help you to develop production-grade IoT solutions by using the ESP32 SoC. You'll learn how to employ ESP32 in your IoT projects by interfacing with different sensors and actuators using different types of serial protocols. This book will show you how some projects require immediate output for end-users, and cover different display technologies as well as examples of driving different types of displays. The book features a dedicated chapter on cybersecurity packed with hands-on examples. As you progress, you'll get to grips with BLE technologies and BLE mesh networking and work on a complete smart home project where all nodes communicate over a BLE mesh. Later chapters will show you how IoT requires cloud connectivity most of the time and remote access to smart devices. You'll also see how cloud platforms and third-party integrations enable endless possibilities for your end-users, such as insights with big data analytics and predictive maintenance to minimize costs. By the end of this book, you'll have developed the skills you need to start using ESP32 in your next wireless IoT project and meet the project's requirements by building effective, efficient, and secure solutions.
Table of Contents (18 chapters)
1
Section 1: Using ESP32
7
Section 2: Local Network Communication
12
Section 3: Cloud Communication

Summary

In this chapter, we have learned a lot about the advanced features of ESP32 to develop professional, real-world IoT devices. UART is a prominent protocol that provides robust communication between different MCUs without a need for a common clock, as long as they are configured with the same UART parameters. We have learned how to develop multimedia applications. ESP32 supports the I2S protocol to let us develop audio applications. We have discussed common camera sensor technologies and developed a photo-trap device by using an ESP32-CAM devkit.

Finally, a great feature of ESP32, the power management subsystem, was the topic in the last section. If you want to design a battery-operated IoT device, you will definitely need to know about the power modes of ESP32. ESP32 incorporates a ULP coprocessor that can be used to take ambient measurements even if ESP32 is in deep-sleep mode.

We are going to develop a full project in the next chapter. The output of the project will...