Book Image

Building a Home Security System with Raspberry Pi

By : Matthew Poole
Book Image

Building a Home Security System with Raspberry Pi

By: Matthew Poole

Overview of this book

The Raspberry Pi is a powerful low-cost credit-card-sized computer, which lends itself perfectly as the controller for a sophisticated home security system. Using the on-board interfaces available, the Raspberry Pi can be expanded to allow the connection of a virtually infinite number of security sensors and devices. The Raspberry Pi has the processing power and interfaces available to build a sophisticated home security system but at a fraction of the cost of commercially available systems. Building a Home Security System with Raspberry Pi starts off by showing you the Raspberry Pi and how to set up the Linux-based operating system. It then guides you through connecting switch sensors and LEDs to the native GPIO connector safely, and how to access them using simple Bash scripts. As you dive further in, you’ll learn how to build an input/output expansion board using the I2C interface and power supply, allowing the connection of the large number of sensors needed for a typical home security setup. In the later chapters of the book, we'll look at more sophisticated topics such as adding cameras, remotely accessing the system using your mobile phone, receiving intrusion alerts and images by e-mail, and more. By the end of the book, you will be well-versed with the use of Raspberry Pi to power a home-based security system that sends message alerts whenever it is triggered and will be able to build a truly sophisticated and modular home security system. You will also gain a good understanding of Raspberry Pi's ecosystem and be able to write the functions required for a security system.
Table of Contents (16 chapters)
Building a Home Security System with Raspberry Pi
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Anti-tamper circuits


If you take a closer look at our system, you might realize that depending on whether you are detecting normally open or normally closed sensor switches, it is possible to tamper with the sensor channel by simply cutting the wire. So, in the case of a normally open switch, it wouldn't activate the monitoring system if the wires were cut, as it would always appear to be open, even if the switch was closed.

To mitigate this, most alarm systems feature a 4-core wiring system to connect the sensor devices to the main control board—two cores are used to connect the sensor and two are used to create an anti-tamper loop, which then itself forms a sensor input for monitoring.

4-core alarm cable

Take a look at the following circuit so that you see what I mean:

In this circuit, we have two sensors: one for monitoring a window and one for monitoring a door. These are connected to the I/O BUS A inputs, 0 and 1 (or GPA0 and GPA1, as we like to call them). As before, they are pulled down...