Book Image

Mastering ROS for Robotics Programming

By : Lentin Joseph
Book Image

Mastering ROS for Robotics Programming

By: Lentin Joseph

Overview of this book

The area of robotics is gaining huge momentum among corporate people, researchers, hobbyists, and students. The major challenge in robotics is its controlling software. The Robot Operating System (ROS) is a modular software platform to develop generic robotic applications. This book discusses the advanced concepts in robotics and how to program using ROS. It starts with deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. After discussing robot manipulation and navigation in robots, you will get to grips with the interfacing I/O boards, sensors, and actuators of ROS. One of the essential ingredients of robots are vision sensors, and an entire chapter is dedicated to the vision sensor, its interfacing in ROS, and its programming. You will discuss the hardware interfacing and simulation of complex robot to ROS and ROS Industrial (Package used for interfacing industrial robots). Finally, you will get to know the best practices to follow when programming using ROS.
Table of Contents (19 chapters)
Mastering ROS for Robotics Programming
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

ROS packages for robot modeling


ROS provides some good packages that can be used to build 3D robot models. In this section, we will discuss some of the important ROS packages that are commonly used to build robot models:

  • robot_model: ROS has a meta package called robot_model, which contains important packages that help build the 3D robot models. We can see all the important packages inside this meta-package:

    • urdf: One of the important packages inside the robot_model meta package is urdf. The URDF package contains a C++ parser for the Unified Robot Description Format (URDF), which is an XML file to represent a robot model.

  • We can define a robot model, sensors, and a working environment using URDF and can parse it using URDF parsers. We can only describe a robot in URDF that has a tree-like structure in its links, that is, the robot will have rigid links and will be connected using joints. Flexible links can't be represented using URDF. The URDF is composed using special XML tags and we can...