Book Image

Mastering ROS for Robotics Programming

By : Lentin Joseph
Book Image

Mastering ROS for Robotics Programming

By: Lentin Joseph

Overview of this book

The area of robotics is gaining huge momentum among corporate people, researchers, hobbyists, and students. The major challenge in robotics is its controlling software. The Robot Operating System (ROS) is a modular software platform to develop generic robotic applications. This book discusses the advanced concepts in robotics and how to program using ROS. It starts with deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. After discussing robot manipulation and navigation in robots, you will get to grips with the interfacing I/O boards, sensors, and actuators of ROS. One of the essential ingredients of robots are vision sensors, and an entire chapter is dedicated to the vision sensor, its interfacing in ROS, and its programming. You will discuss the hardware interfacing and simulation of complex robot to ROS and ROS Industrial (Package used for interfacing industrial robots). Finally, you will get to know the best practices to follow when programming using ROS.
Table of Contents (19 chapters)
Mastering ROS for Robotics Programming
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Understanding robot modeling using URDF


We have discussed the urdf package. In this section, we will look further at the URDF XML tags, which help to model the robot. We have to create a file and write the relationship between each link and joint in the robot and save the file with the .urdf extension.

The URDF can represent the kinematic and dynamic description of the robot, visual representation of the robot, and the collision model of the robot.

The following tags are the commonly used URDF tags to compose a URDF robot model:

  • link: The link tag represents a single link of a robot. Using this tag, we can model a robot link and its properties. The modeling includes size, shape, color, and can even import a 3D mesh to represent the robot link. We can also provide dynamic properties of the link such as inertial matrix and collision properties.

    The syntax is as follows:

    <link name="<name of the link>">
    <inertial>...........</inertial>
      <visual> ............</visual...