Book Image

Mastering ROS for Robotics Programming

By : Lentin Joseph
Book Image

Mastering ROS for Robotics Programming

By: Lentin Joseph

Overview of this book

The area of robotics is gaining huge momentum among corporate people, researchers, hobbyists, and students. The major challenge in robotics is its controlling software. The Robot Operating System (ROS) is a modular software platform to develop generic robotic applications. This book discusses the advanced concepts in robotics and how to program using ROS. It starts with deep overview of the ROS framework, which will give you a clear idea of how ROS really works. During the course of the book, you will learn how to build models of complex robots, and simulate and interface the robot using the ROS MoveIt motion planning library and ROS navigation stacks. After discussing robot manipulation and navigation in robots, you will get to grips with the interfacing I/O boards, sensors, and actuators of ROS. One of the essential ingredients of robots are vision sensors, and an entire chapter is dedicated to the vision sensor, its interfacing in ROS, and its programming. You will discuss the hardware interfacing and simulation of complex robot to ROS and ROS Industrial (Package used for interfacing industrial robots). Finally, you will get to know the best practices to follow when programming using ROS.
Table of Contents (19 chapters)
Mastering ROS for Robotics Programming
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Adding physical and collision properties to a URDF model


Before simulating a robot in a robot simulator, such as Gazebo, V-REP, and so on, we need to define the robot link's physical properties such as geometry, color, mass, and inertia, and the collision properties of the link.

We will only get good simulation results if we define all these properties inside the robot model. URDF provides tags to include all these parameters and code snippets of base_link contained in theses properties as given here:

<link>
......    
<collision>
      <geometry>
      <cylinder length="0.03" radius="0.2"/>
      </geometry>
      <origin rpy="0 0 0" xyz="0 0 0"/>
    </collision>

    <inertial>
    <mass value="1"/>
    <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
    </inertial>
...........
</link>

Here, we define the collision geometry as cylinder and the mass as 1 Kg, and we also set the inertial matrix of...