Book Image

Internet of Things with Python

By : Gaston C. Hillar
Book Image

Internet of Things with Python

By: Gaston C. Hillar

Overview of this book

Internet of Things (IoT) is revolutionizing the way devices/things interact with each other. And when you have IoT with Python on your side, you'll be able to build interactive objects and design them. This book lets you stay at the forefront of cutting-edge research on IoT. We'll open up the possibilities using tools that enable you to interact with the world, such as Intel Galileo Gen 2, sensors, and other hardware. You will learn how to read, write, and convert digital values to generate analog output by programming Pulse Width Modulation (PWM) in Python. You will get familiar with the complex communication system included in the board, so you can interact with any shield, actuator, or sensor. Later on, you will not only see how to work with data received from the sensors, but also perform actions by sending them to a specific shield. You'll be able to connect your IoT device to the entire world, by integrating WiFi, Bluetooth, and Internet settings. With everything ready, you will see how to work in real time on your IoT device using the MQTT protocol in python. By the end of the book, you will be able to develop IoT prototypes with Python, libraries, and tools.
Table of Contents (19 chapters)
Internet of Things with Python
Credits
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com
Preface
Index

Turning on and off an onboard component


First, we will take advantage of an onboard LED (Light Emitting Diode) to write our first Python lines that interact with the digital output capabilities included in the Intel Galileo Gen 2 board. The simple example will allow us to understand how the mraa library allows us to easily turn on and off one of the onboard components with Python code.

In the previous chapter, we recognized the different elements included in the Intel Galileo Gen 2 board. We know that there are three rectangular LEDs located at the right hand side of the USB 2.0 host connector. The first LED, labeled L is connected to pin 13 of the digital I/O pins, and therefore, a high level sent to pin 13 will turn on this LED and a low level will turn it off.

We will write a few lines of Python code that will use the mraa library to make the onboard LED labeled L to repeat the following loop until the Python program is interrupted:

  • Turn on

  • Stay turned on for 3 seconds

  • Turn off

  • Stay turned...